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1 representation theory

In Algebra III, we studied groups, rings (& fields), and modules (& vector spaces).
In this class, we consider composite theories, i.e. interactions between these objects.
We’ll spend time on representation theory (groups↔ vector spaces) and Galois
theory (fields↔ groups).

galois motivation

Consider ax2 + bx + c = 0 : a, b, c ∈ F. A solution is given by the quadratic
equation, which contains the root of the discriminant, i.e. b2 − 4ac. There are
similar formulas for the general cubic and quadratic, which contain cube and
square roots. Is there a general solution for a nth order equation? No.This question
motivates Galois theory.

Galois was able to associate every polynomial f (x) = anx
n + ... + a0 : ai ∈ F to a

group, which encodes whether f (x) is solvable by radicals.

I Representation Theory
We can understand a group G by seeing how it acts on various objects (e.g. a set).

def 1.1A linear representation of a finite group G is a vector space V over a field F
equipped with a group action

G × V → V

that respects the vector space, i.e. mg : V → V with mg(v) = gv is a linear
transformation. We make the following assumptions unless otherwise stated:

1. G is finite.

2. V is finite dimensional.

3. F is algebraically closed and of characteristic 0 (e.g. F = C).

Since V is a G-set, ρ : G → AutF(V ) which sends g 7→ mg is a homomorphism.
Relatedly, if dim(V ) < ∞, then ρ : G 7→ AutF(V ) = GLn(F).

def 1.2The group ring F[G] is a (typically) non-commutative ring consisting of all linear
combinations {

∑
g∈Gλgg : λg ∈ F}. It’s endowed with the multiplication∑

g∈G
αgg


∑
h∈G

βhh

 =
∑

g,h∈G×G
αgβh(gh)

where, in particular, (
∑
λg )v =

∑
λg(gv). Then, instead of viewing V as a vector

space over F with the additional group action G × V → V , we can simply view it
as a module over the group ring F[G].
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def 1.3 A representation V of G is irreducible if there is no G-stable, non-trivial sub-
space W ⊊ VBy G-stable, we mean

gw ∈ W ∀w ∈ W, g ∈ G
. This definition is somewhat analogous to transitive G-sets. Note,

however, that V is never a transitive G-set, since g0⃗ = 0⃗ ∀g.

♠Examples♣e.g. 1.1

Eg 1: Let G = Z2 = {1, τ} : τ2 = 1. If V is a representation of G, then V is
determined by ρ : G→ AutF(V ), i.e. ρ(τ) ∈ AutF(V ). What are the eigenvalues of
ρ(τ)? It’s minimal polynomial must divide x2 − 1 = (x − 1)(x + 1).

Supposing 2 , 0 in F, we have

V = V+ ⊕ V− V+ = {v ∈ V : τv = v}, V− = {v ∈ V : τv = −v}

V is then irreducible ⇐⇒ (dim(V+),dim(V−)) = (1, 0) or (0, 1), as otherwise we
could take either V+ or V− as nontrivial G-stable subspaces.

Eg 2: Let G = {g1, ..., gN } be a finite abelian group. Let F be algebraically closed
with characteristic 0 (e.g. F = C). If V is a representation of G, then T1, ..., TN
with Ti = ρ(gi) ∈ AutF(V ) commute with eachother.

If Ti commute with eachother, then they have a simultaneous eigenvector v ∈ V
(see Prop 1.1). Hence, the scalar multiples of v comprise a G-stable subspace, so
the representation V is irreducible if dim(V ) = 1.

By complex, we mean (a
vector space over) an

algebraically closed field
with characteristic 0.

1.1 Finite Abelian Representation

If G is a finite abelian group, and V is irreducible representation of G over a
complex field, then dim(V ) = 1.

proof.

G = {g1, ..., gN }. Then consider ρ : G → Aut(V ), and let Tj : V → V =
ρ(gi). Then, Tj and Ti pairwise commute (since G is abelian). T1, ..., TN have
a simultaneous eigenvector v by Prop 1.1. Hence, span({v}) is a G-stable
subspace. Since V is irreducible, we conclude V = span({v}).

prop 1.1 If T1, ..., TN is a collection of linear transformations on a complex vector space,
then they have a simultaneous eigenvector, i.e. ∃v : Tjv = λjv ∀j.

proof. By induction. Consider T1. Since F is complex, its minimal polynomial has a
root λ, which is precisely an eigenvalue. Hence, an eigenvector exists.

n → n + 1. Let λ be an eigenvalue for TN+1. Consider Vλ := EigTN+1
(λ), the

eigenvectors for λ. We claim that Tj maps Vλ → Vλ, i.e. Vλ is Tj-stable. For
this, we have TN+1Tjv = TjTN+1v = λTjv, so Tjv ∈ Vλ.

By induction hypothesis, there is a simultaneous eigenvector v in Vλ for
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T1, ..., TN . (Thinking of Tj as a linear transformation Vλ → Vλ via its restric-
tion).

♠Examples♣ e.g. 1.2

Eg 1: Let G = S3 and F be arbitrary with 2 , 0. Then consider ρ : G→ AutF(V ),
an irreducible representation. What is T = ρ((23))? T 2 = I , so T is diagonalizable
with eigenvalues in {1,−1}.

Case 1: −1 is the only eigenvalue of T . Then (23) acts as −I . Since (23) and
(12), (13) are conjugate, (12), (13) act as −I as well (since −I, I commute with
everything). What about ρ(123)? This is ρ((13)(12)) = ρ(13)ρ(12) = (−I)2 = I .
Hence, all order 3 elements act as I . We conclude that ρ(g) = sgn(g) (i.e. 0 for
even, 1 for odd permutations).

Case 2: 1 is an eigenvalue of T = ρ(23). Let e1 be a non-zero vector fixed by T , i.e.
T e1 = e1. Then let e2 = (123)e1 and e3 = (123)2e1. Then {e1, e2, e3} is an S3-stable
subspace, so V = span(e1, e2, e3).

↪→ Case 2a: w = e1 + e2 + e3 , 0. Then S3 fixes w. One checks that σ (ei + ej + ek) =
eσ (i) + eσ (j) + eσ (k). Hence, σw = w.

↪→ Case 2b: e1 + e2 + e3 = 0. Then V = span(e1, e2, e3) as before. dim(V ) ≤ 2, and
e1 , e2 , e3. Then (23)e1 = e1 and (23)(e2 − e3) = e3 − e2 = −(e2 − e3). Hence, we
have two eigenvalues for ρ(23), so dim(V ) ≥ 2 =⇒ dim(V ) = 2.

Relative to the basis e1, e2 for V , the representation of S3 is given by

1↔
(
1 0
0 1

)
(12)↔

(
0 1
1 0

)
(13)↔

(
−1 0
−1 1

)
(23)↔

(
1 −1
0 −1

)

(123)↔
(
0 −1
1 −1

)
(132)↔

(
−1 1
−1 0

)
Conclusion: there are essentially 3 distinct, irreducible representations of S3:

1. sgn : S3 → C∗

2. Id

3. A 2-dim representation

def 1.4If V1, V2 are two representations of a group G, a G-homomorphism from V1 to
V2 is a linear map ϕ : V1 → V2 which is compatible with the action on G, i.e.
ϕ(gv) = gϕ(v) ∀g ∈ G, v ∈ V1.

def 1.5If a G-homomorphism ϕ is a vector space isomorphism, then V1 � V2 as repre-
sentations.
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♠Examples♣e.g. 1.3

Consider G = D8, the symmetries of a square. We may label this group G =
{1, r, r2, r3, V , H, D1, D2}. We want to think up some representation ρ : D8 →
AutF(V ), where 2 , 0 by assumption.

Consider r2. It commutes with everything. Then T = ρ(r2) ∈ AutF(V ) is an order
2 element, so T 2 = I . Since 2 , 0, V = V+ ⊕ V−, where V+ = {v : T v = v} and
V− = {v : T v = −v}.

We claim that V+ and V− are both preserved by any g ∈ D8. Take v ∈ V+. Then
T gv = r2gv = gr2v = gT v = gv. The result follows similarly for v ∈ V−. Hence,
if V is an irreducible representation, then either V = V+ or V = V−, i.e. ρ(r2) = I
or −I .

Case 1: ρ(r2) = I , so ρ is not injective, and ker(ρ) ⊆ {1, r2}). We can write the
following, then:

D8 AutF(V )

K4

ρ

π ϕ

Since 2Z × 2Z = K4 is abelian, we have 4 1-dim irreducible representations ϕ into
Aut(V ). Hence, we compose with π to yield these for D8.

Case 2: ρ(r2) = −I . We claim that ρ(H) has both eigenvalues −1 and 1. If
ρ(H) = I , then ρ(V ) = ρ(r2H) = −I . But we also have V = rHr−1, so ρ(rHr−1) =
ρ(r)ρ(H)ρ(r−1) = I =⇒  . We draw a similar contradiction by taking ρ(H) = −I .
Hence, H has both eigenvalues, so dim(V ) ≥ 2.

Let v1, v2 ∈ V be such that Hv1 = v1 and v2 = rv1. We claim that span(v1, v2) is
preserved by D8, and hence span(v1, v2) = V .

Consider r ∈ D8. We know rv1 = v2 and rv2 = r2v1 = −v1, so {1, r, r2, r3} preserve
span(v1, v2).

Consider H ∈ D8. Hv1 = v1 by construction. Also, Hv2 = Hrv1 = r−1Hv1 =
r−1v1 = r3v1 = r2v2 = −v2. Hence, H composed with {1, r, r2, r3}, i.e. the whole
group D8 preserve span(v1, v2), as desired.

H ↔
(
1 0
0 −1

)
r ↔

(
0 −1
1 0

)
(the rest follow by composition)

Some questions to consider:

1. Can we describe all irreducible representations of G up to isomorphism?
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2. How is a general representation of G made up of irreducible representa-
tions?

prop 1.2If V1, V2 are representations of G, then V1 ⊕ V2 is also a representation of G, with
g(v1, v2) = (gv1, gv2).

1.2 Maschke’s Theorem

Any representation of a finite group G over a complex field can be expressed
as a direct sum of irreducible representations.

proof.

Let V be a representation of G. Let W be a proper sub-representation of G
in V . Let W ′ be the complementary subspace such that V = W ⊕W ′, as in
Thm 1.3. Then dim(W ),dim(W ′) < n. We proceed by induction, relying on
this lessening of dimension.

Remark 1: this is analogous to "every G-set is a disjoint union of transitive G-sets."
However, this is a trivial result, but Maschke’s is not.

Remark 2: the assumption |G| < ∞ is essential. As a counterexample, take (Z,+)

and ρ : G → GL2(C) = ρ(n) =
(
1 n
0 1

)
, i.e. ne1 = e1 and ne2 = ne1 + e2. Note that

the line span(e1) is a G-stable subspace, i.e. an irreducible sub-representation
of V . Are there any other invariant lines? Take ae1 + be2. wlog assume b = 1.
Consider W = G(ae1 + e2). Then 1 · (ae1 + e2) = (1 + a)e1 + e2 ∈ W , so e1 ∈ W  .

Remark 3: C is necessary. Let F = Z/3Z, G = S3. Then let V = Fe1 + Fe2 + Fe3.
F(e1 + e2 + e3) is an irreducible representation. Let W be any G-stable subspace
of V . Then ∃a, b, c, not all equal, with ae1 + be2 + ce3 ∈ W . Multiplying by (123),
ce1 + ae2 + be3 ∈ W , and once more by (132) yields be1 + ce2 + ae3 ∈ W . Hence,
(a + b + c)(e1 + e2 + e3) ∈ W .

We have, then, that (a− b)(e1 − e2), (b − c)(e2 − e3), (a− c)(e1 − e3) ∈ W . At least one
of these must be non-zero, wlog take a − b , 0. Then e1 − e2, e2 − e3, e3 − e1 ∈ W .

We find e1 + e2 + e3 ∈ W , so W ⊆ F(e1 + e2 + e3)  .

1.3 Semi-Simplicity of Representations

Let V be a representation of a finite group G above a complex field. Let
W ⊆ V be a sub-representation. Then W has a G-stable complement W ′

such that V = W ⊕W ′.

proof.



honours algebra iv 6

Consider a projection π0 : V → W with π2
0 = π0, Im(π0) = W . Let ker(π) =

W ′0. Then we can write V = W ⊕W ′0. However, we have no guarantee that
W ′0 is G-stable.

We alter π by replacing it with

π =
1

#G

∑
g∈G

ρ(g) ◦ π0 ◦ ρ(g)−1

Some properties of π:

1. π ∈ EndC(V ).

2. π is a projection onto W . See that

π2 =

 1
#G

∑
g∈G

gπ0g
−1


 1

#G

∑
h∈G

hπ0h
−1

 =
1

#G2

∑
g,h∈G

gπ0g
−1hπ0h

−1

where, by writing g (or h), we mean its linear representation in V . Note
that π0h

−1 sends any v ∈ V to a vector in W . Since W is G-invariant,
g−1hπ0h

−1 also sends v to W . But now the next π0 acts as the identity
(since we’re already in W ). Hence, the above summand reduces to
hπ0h

−1, and we may write

π2 =
1

#G2

∑
g,h∈G

hπ0h
−1 =

1
#G

∑
h∈G

hπ0h
−1 = π

3. Im(π) = W . Im(π) ⊆ W . But let w ∈ W . Then π(w) = w (check it).

4. π(hv) = hπ(v) ∀h ∈ G. See that

π(hv) =
1

#G

∑
g∈G

gπg−1hv =
1

#G

∑
g∈G

gπ(h−1g)−1v

Now, let g̃ = h−1g. Then g = hg̃, and we write

=
1

#G

∑
g̃∈G

hg̃πg̃v = hπ(v)

We can now take W ′ = ker(π) and write V = W ⊕W ′. We have that W ′ is
G-stable, now, since w ∈ W ′ =⇒ π(gw) = gπ(w) = g0 = 0 =⇒ gw ∈ W ′.

We’ll now give a second proof of Thm 1.2. Consider
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def 1.6A Hermitian inner product of V is a Hermitian, bilinear mapping

V × V → C

satisfying ⟨v1 + v2, w⟩ = ⟨v1, w⟩ + ⟨v2, w⟩ and ⟨λv, w⟩ = λ ⟨v, w⟩. On the second
coordinate, we have ⟨v, w1 + w2⟩ = ⟨v, w1⟩ + ⟨v, w2⟩ and ⟨v, λw⟩ = λ ⟨v, w⟩. This
"skew linearity" in the second argument allows us to impose ⟨v, v⟩ ∈ R+ and
⟨v, v⟩ = 0 ⇐⇒ v = 0.

One can think of ⟨v, v⟩ as the square of the "length" of v.

1.4 Special Hermitian Pairing

If V is a complex representation of a finite group G, then there is a Hermitian
inner product on V such that

⟨gv, gw⟩ = ⟨v, w⟩ ∀g ∈ G and v, w ∈ V

proof.

Let ⟨ , ⟩0 be an arbitrary Hermitian inner product on V . To do so, choose a
basis (e1, ..., en) be a complex basis for V , and define〈

ei , ej
〉

0
= 0 if i , j, 1 o.w.

Then
〈∑n

i=1 αei ,
∑n
i=1 βei

〉
= α1β1 + ... + αnβn ∈ C. Similar to the proof for

Thm 1.3, we will take an average. Consider another inner product

⟨v, w⟩ =
1

#G

∑
g∈G
⟨gv, gw⟩0

This has some nice properties. In particular, ⟨ , ⟩ is Hermitian linear, positive
definite, and G-equivalent.

We’ll verify positiveness:

⟨v, v⟩ =
1

#G

∑
g∈G
⟨gv, gv⟩0
≥0

≥ 0

Suppose ⟨v, v⟩ = 0. Then
∑
g∈G ⟨gv, gv⟩0 = 0, so ⟨gv, gv⟩0 = 0 ∀g ∈ G. In

particular, for g = 1, ⟨v, v⟩0 = 0 ⇐⇒ v = 0.

And to verify G-equivariant, we have ⟨hv, hw⟩ = ⟨v, w⟩.

proof of 1.2
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We provide a new angle to proving Thm 1.2. If W is a sub-representation, let
W⊥ = {v ∈ V : ⟨v, w⟩ = 0} over the Hermitian inner product outlined in Thm
1.4.

Then we may write V = W ⊕ W⊥. The G-stability of W⊥ follows from
equivariance of the inner product. Let w ∈ W, v ∈ W⊥ =⇒ ⟨gv, w⟩ =〈
v, g−1w

〉
= 0 =⇒ gv ∈ W⊥.

This "semi-simple" structure of representations is a rare sight: abelian groups, and
especially groups generally, are not necessarily made of irreducible components.

We ask the following 2 questions:

1. Given G, produce the complete list of irreducible representations up to
isomorphism.

2. Given a general, finite dimensional representation V of G, generate

V = V m1
1 ⊕ V m2

2 ⊕ ... ⊕ V mt
t Vi irreducible

If V and W are two G-representations, we may investigate HomG(V ,W ) = {T :
T → W : T linear s.t. T (gv) = gT (v)}. Note that HomG(V ,W ) is a C-vector
space.

1.5 Schur’s Lemma

Let V ,W be irreducible representations of G. Then

HomG(V ,W ) =

0 V ≇ W

C V � W

where HomG(V ,W ) is the space of G-equivariant linear transformations
T : V → W .

proof.

Suppose that V ≇ W , and let T ∈ HomG(V ,W ). ker(T ) ⊆ V is a sub-
representation of G, since v ∈ ker(T ) =⇒ T (gv) = gT (v) = 0. Hence,
since V is irreducible, ker(T ) may be trivial or V itself. If it were trivial, then
Im(T ) � V . But Im(T ) ⊆ W , so by irreducibility ofW we yield a contradiction.
Hence, ker(T ) = V , so T = 0.

Suppose that V � W . Let T ∈ HomG(V ,W ) = EndG(V ). Since C is alge-
braically closed, T has an eigenvalue λ. Then T −λI ∈ EndG(V ). ker(T −λI) is
a non-trivial sub-representation of V , and hence ker(T −λI) = V =⇒ T = λI .
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Recall question (2) from above. As a corollary of Schur’s Lemma, we see that
mj = dimC HomG(Vj , V ).

proof.

HomG(Vj , V ) = HomG(Vj , V1 ⊕ ... ⊕ Vs) =
⊕
i∈I

Hom(Vj , Vi) : Vi � Vj ∀i ∈ I

= C ⊕ ... ⊕ C
|I |=mj times

=⇒ dim HomG(Vj , V ) = mj

def 1.7For an endomorphism T : V → V , the trace, tr(T ), is defined as tr([T ]β), where
β is some basis. This is well-defined, since basis representations [T ]α , [T ]β are
conjugate, and trace is a conjugate-invariant function.

prop 1.3Let W ⊆ V be a subspace and π be a function V → W such that π2 = π and
Im(π) = W . Then tr(π) = dim(W ).

proof.Let v1, ..., vd be a basis for W and vd+1, ..., dn be a basis for ker(π). Then, since
we can write V = W ⊕ ker(π) (recall projection properties), β = d1, ..., dn is a
basis for V . In this basis, π(vi) = vi for 1 ≤ i ≤ d. Hence

[π]β =



1 0 0
0 1 0
0 0 1

d

· · ·

...
. . .


As for the rest of the matrix, π(vi) for i > d will be mapped to a linear
combination of basis vectors vi : i ≤ d, so, in particular, they will not have
diagonal 1 entries. Since d = dim(W ), we conclude tr(π) = dim(W ).

def 1.8V G = {v ∈ V : gv = v∀g ∈ G}. If V1 = C is the trivial action of G, then
HomG(V1, V ) = V G.

prop 1.4V G = ∩g∈G (1-eigenspaces for ρ(g))

1.6 Burnside

If V is a complex representation of a finite G, then

dim(V G) =
1

#G

∑
g∈G

tr(ρ(g))

proof.
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By Prop 1.3, for a projection π : V → W (i.e. Im(π) = W, π2 = π), we have
tr(π) = dim(W ). Consider

π :=
1

#G

∑
g∈G

ρ(g) ∈ EndC(V )

Note that Im(π) ⊆ V G. Let h ∈ G and v ∈ V . Then

hπ(v) =
1

#G

∑
g∈G

hgv = π(v)

Conversely, if v ∈ V G, then π(v) = v. Hence, V G = Im(π) exactly. This also
shows that π2(v) = π(v). We conclude that π projects V → V G.

dim(V G) = tr(π) = tr

 1
#G

∑
g∈G

ρ(g)

 =
1

#G

∑
g∈G

tr(ρ(g))

prop 1.5 Thm 1.6 =⇒ Burnside’s Lemma.

proof. Consider later.

characters

def 1.9 If V is a finite dimensional, complex representation of G, then the character of V
is the function χV : G→ C such that

χV (g) = tr(ρ(g))

prop 1.6 χV is constant on conjugacy classes, i.e. χV (hgh−1) = χV (g).

proof. tr(ρ(hgh−1)) = tr(ρ(h)ρ(g)ρ(h)−1) = tr(g)

♠Examples♣e.g. 1.4

Eg 1: Let G = S3. We discovered 3 distinct representations of S3: the trivial
action ρ(g) = 1 on V = C; the sgn function ρ(g) = sgn(g) on V = C; and the
two-dimensional representation given by

Id↔
(
1 0
0 1

)
(12)↔

(
0 1
1 0

)
(13)↔

(
−1 0
−1 1

)
(23)↔

(
1 −1
0 −1

)
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(123)↔
(
0 −1
1 −1

)
(132)↔

(
−1 1
−1 0

)
Denote these representations by "triv," "sgn," and 2, respectively.

The conjugacy classes and associated traces are hence given by

1 (12) (123)
χtriv 1 1 1
χsgn 1 −1 1
χ2 2 0 −1

Eg 2: Recall G = D8 = {1, r, r2, r3, V , H, D1, D2}. We have 4 1-dim irreducible
representations given by D8/ ⟨1, r2⟩ = Z2 × Z2. Denote these by χtriv, ..., χ4. We
also have the unique 2-dim irreducible representation given by

Id↔
(
1 0
0 1

)
r ↔

(
0 −1
1 0

)
r2 ↔

(
−1 0
0 −1

)
r3 ↔

(
0 1
−1 0

)

V ↔
(
−1 0
0 1

)
H ↔

(
1 0
0 −1

)
D1 ↔

(
0 1
1 0

)
D2 ↔

(
0 −1
−1 0

)
1 {r2} {r, r3} {V , H} {D1, D2}

χtriv 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

From these two examples, it seems that the number of irreducible representations
coincides with the number of conjugacy classes h(G) of G (also called the class
number of G). It also seems that the sum of squares of the rows, weighted by class
size, is the cardinality of the group. We conjecture:

1
#G

∑
g∈G

χi(g)χj(g) = δij

Eg 3: The Monster Group, #G ≈ 8 · 1053, has a smallest non-trivial representation
of dimension d = 196, 883. ρV then is given as a collection of 8 · 1053 196, 883 ×
196,883 matrices. This is too much information to ever contain in a computer.
However, G has only 194 conjugacy classes, and so χV , with 194 complex numbers,
defines V .

prop 1.7χV (1) = dim(V )
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prop 1.8 Given representations V and W , HomG(V ,W ) = Hom(V ,W )G, where we view
Hom(V ,W ) as a representation with the action gT = g ◦ T ◦ g−1

prop 1.9 Given two G-representations V ,W , then V ⊕W is a representation with g(v, w) =
(gv, gw). Then

χV⊕W = χV + χW

1.7 Character of Hom(V ,W )

χHom(V ,W ) = χV χW

proof.

Let g ∈ G. Then ρV (g) acting on V is diagonalizable. Let e1, ..., em be a basis
of eigenvectors for ρV (g), with m = dim(V ), and gei = αiei .

Similarly, let f1, ..., fn be a basis of eigenvectors for ρW (g), with gfj = βj fj .

Then χV (g) =
∑m
i=1 αi and χW (g) =

∑n
j=1 βj .

Let Tij ∈ Hom(V ,W ), where 1 ≤ i ≤ m and 1 ≤ j ≤ n, be the following
transofmrations

Tij(ek) =

0 k , i

fj k = i

We claim that Tij is a basis for Hom(V ,W ). We have

(gTij )(ek) = gT (g−1ek) = gT (λ−1
k ek) = λ−1

k gTijek

= λ−1
k

0 j , i

λ−1
k βifj j = i

=⇒ gTij = λ−1
j βjTij

Hence, gTij = α−1
i βjTij . We have that ρHom(V ,W )(g) is a mn ×mn matrix with

entires {α−1
i βj}j∈[m],j∈[n], so

χHom(V ,W )(g) =
∑

1≤i≤m
1≤j≤n

α−1
i βj =

 m∑
i=1

α−1
i


 n∑
j=1

βj

 =

 m∑
i=1

αi


 n∑
j=1

βj


since αi are roots of unity. But this is χV (g)χW (g)

Orthogonality of Irreducible Group Characters

Let V1, ..., Vt be a complete list of distinct, irreducible representations of G. Call
χ1, ..., χt : G→ C the associated characters.
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χj ∈ L2(G). Given f1, f2 ∈ L2(G) ≈ C#G, let ⟨f1, f2⟩ = 1
#G

∑
g∈G f1(g)f2(g). This is

indeed an inner product.

1.8 Orthogonality of Characters

⟨χi , χj⟩ =

0 i , j

1 i = j

proof.⟨χi , χj⟩ =
1

#G

∑
g∈G

χi(g)χj(g)

=
1

#G

∑
g∈G

χHom(Vi ,Vj )(g) by Thm 1.8

= dimC(Hom(Vi , Vj )
G) by Thm 1.6

= dimC(HomG(Vi , Vj )) = dimC

C i = j

0 o.w.
by Thm 1.5

=

1 i = j

0 o.w.

prop 1.10χ1, ..., χt is an orthonormal system of vectors in L2(G).
i.e. an orthonormal basis
prop 1.11χ1, ..., χt are linearly independent. Hence t ≤ dim(L2(G)) = #G.

prop 1.12t ≤ h(G), the number of conjugacy classes of G.

proof.L2
class(G) ⊆ L2(G), where L2

class(G) = {f : G → C : f (hgh−1) = f (g)}. The
dimension of this space is h(G).

♠Examples♣ e.g. 1.5

Eg 1: G = S3 (see Example 1.2), we had t = 3, with the dimensions of the first
and second representations d1 = d2 = 1, and d3 = 2. h(G) = 3 is hence a tight
bound.

Eg 2: G = D8 (see Example 1.3), we had t = 5 with d1 = ... = d4 = 1 and d5 = 2.
Once again t = h(G).
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1.9 Character Characterizes Representations

If V and W are two complex representations of G, then V is isomorphic to
W as a representation ⇐⇒ χV = χW .

proof.

V = V m1
1 ⊕ · · · ⊕ V mt

t , where Vi are irreducible, by Thm 1.2. Then

χV = m1χ1 + ... + mtχt

Note that, by the orthogonality of characters, ⟨χV , χj⟩ = mj , and hence V is
determined by χV .

Regular Representations of G

In Prop 1.11, we argued that, for characters χ1, ..., χt, t ≤ h(G), the class number
of G, by seeing that {χ1, ..., χt} ⊆ L2

class(G).

def 1.10 Consider C[G] = {
∑

g∈Gλgg : λg ∈ C}. Then G ⟳ C[G] by left multiplication. We
call C[G] the regular representation, and denote Vreg = C[G].

prop 1.13

χVreg
(g) = #{h ∈ G : gh = h} =

#G g = 1

0 o.w.

prop 1.14 Every irreducible representation occurs in Vreg with multiplicity equal to its
dimension, i.e. if dj = dimC(Vj ), then

Vreg = V d1
1 ⊕ · · · ⊕ V

dt
t

proof. We write Vreg = V m1
1 ⊕ · · · ⊕ V mt

t , where mi may be 0. Then

mj = ⟨χreg, χj⟩ =
1

#G

∑
g∈G

χreg(g)χj(g)

=
1

#G
#Gχj(1) = dim(Vj )

prop 1.15 We conclude #G = d2
1 + ... + d2

t .

proof.
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dim(Vreg) = #G = dim(V dim(V1)
1 ⊕ · · · ⊕ V dim(Vt)

t )

= dim(V1) dim(V1) + ... + dim(Vt) dim(Vt)

1.10

Let t be the number of distinct irreducible representations of G. Let h(G) be
the class number of G. Then t = h(G).

proof.

C[G] � V d1
1 ⊕ · · · ⊕ V

dt
t . Note that C[G] is not just a G representation, but a

ring under the following multiplication rule:∑
g∈G

αgg
∑
h∈G

βhh =
∑
g,h∈G

αgβhgh

We then take ρ = (ρ1, ..., ρt) = G → Aut(V1) × · · · × Aut(Vt). We can write
ρ : C[G]→ EndC(V1) ⊕ · · · ⊕ EndC(Vt) by linearity, i.e.∑

λgg →
(∑

λgρ1(g), ...,
∑

λgρt(g)
)

Observe that dim(C[G]) = #G and dim(End(V1)⊕ · · · ⊕End(Vt)) = d2
1 + ...+ d2

t

We show that ρ is an injective ring homomorphism. Let θ =
∑

g∈Gagg ∈
ker(ρ). Then ρj(θ) = 0 =⇒ θ acts as 0 on Vj . Hence θ acts as 0 on all
irreducible representation V1, ..., Vt and hence as 0 on all representations (by
Thm 1.2). Finally, then, θ is 0 on C[G], so in particular θ ·

∑
g∈G agg = 0 =⇒

θ1 = 0 =⇒ θ = 0. So ρ is injective.

dim(C[G]) = dim(End(V1) ⊕ · · · ⊕ End(Vt)), so ρ is also surjective. Hence

C[G] = Md1
(C) ⊕ · · · ⊕Mdt (C)

We compute the centers Z of these rings

dimZ(C[G]) = dim{x =
∑

λgg : xθ = θx ∀θ ∈ C[G]}

dimZ(Md1
(C) ⊕ · · · ⊕Mdt (C)) � dimC ⊕ · · · ⊕ C = t

We claim that θ =
∑
λgg ∈ Z(C[G]) ⇐⇒ hθ = θh ∀h ∈ G, i.e. it is sufficient

to show that an element commutes with the group to show commutativity
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with the group ring. But

⇐⇒
∑

λghg =
∑

λggh

⇐⇒ λg(hgh−1) =
∑

λgg

⇐⇒
∑

λh−1ghg =
∑

λgg ∀h ∈ G

⇐⇒ λh−1gh = λg ∀h ∈ G, g ∈ G

hence, g → λg is a class function, so dim(Z(C[G])) = h(G). But dim(Z(C[G])) =
t, so we conclude t = h(G).

abelian groups

If G is abelian, we’ve seen that all irreducible representations V1, ..., Vt have
dimension 1. From above, t = h(G), but since G is abelian, t = h(G) = #G. A
direct proof would look like:

proof.
G � d1Z × · · · drZ : d1| · · · |dr

by structure theorem. Hence, if ρ is an irrep of G, then ρ : G→ Aut(C) = C×.
Let G be generated by {g1, ..., gr}, where gdii = 1. Then

G = {ga1
1 · · · g

ar
r : ai ≤ di}

ρ is completely determined by the elements ρ(g1), ..., ρ(gr ). Consider

µd = {ξ ∈ C× : ξd = 1}

Consider now Hom(G,C×) = µd1
× · · · × µdr by

ρ 7→ (ρ(g1), ..., ρ(gr ))

This is a natural isomorphism, where we note that Hom(G,C×) and µd1
×

· · · × µdr have group structure. Let Ĝ = {irrep of G}. Then, also, Ĝ =
{irreducible characters of G}. As a group, Ĝ � G, but we’ll see this later
(it’s not natural).

fourier analysis

We are primary concerned with

L2(G) = {square integrable functions from G→ C} � C#G
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where
||f ||2 =

1
#G

∑
g∈G
|f (g)|2 < ∞

for g ∈ L2(G). Note that L2(G) is a Hilbert space with

⟨f1, f2⟩ =
1

#G

∑
g∈G

f1(g)f2(g)

prop 1.16Let Ĝ = {χ1, ..., χN } be the irreducible characters for G. Then Ĝ is an orthonormal
basis for L2(G), and so, for f ∈ L2(G), we can write

f = ⟨χ1, f ⟩χ1 + ... + ⟨χN , f ⟩χN

def 1.11Given f ∈ L2(G), the function f̂ : Ĝ→ C defined by

f̂ (χ) =
1

#G

∑
g∈G

χ(g)f (g) = ⟨χ, f ⟩

is called the Fourier transform of f over G.

def 1.12Correspondingly,

f =
∑
χ∈Ĝ

f̂ (χ)χ

is called the Fourier inversion formula.

♠Examples♣ e.g. 1.6

Eg 1: G = R/Z. Let L2(G) be the space of C-values period functions on R, i.e.
f (x + 1) = f (x), which are square integrable on [0, 1]. Then

⟨f1, f2⟩ =
∫
R/Z

f1(x)f2(x)dx =
∫ 1

0
f1(x)f2(x)dx

Then Ĝ = Hom(G,C×). Any homomorphism from R → C× looks like x 7→ eλx.
But we also must satisfy

eλn = 1

Hence, λ = k2π for k ∈ Z. Hence,

Ĝ = {χj : j ∈ Z : λj(x) = e2πjx} � Z

Recall, if G is abelian, then C[G], the group ring, is commutative. We also have
C[G] �

⊕
χ∈ĜC by the map∑

g∈G
λgg 7→

(∑
λgχ(g)

)
χ∈Ĝ
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Character tables of S4 and A5

Consider S4

Recall #S4 = 24 and there are h = 5 conjugacy classes. The classes of this group
are as follows:

name rep size
1A (1) 1
2A (12)(34) 3
2B (12) 6
3A (123) 8
4A (1234) 6

and we have the character table (to start):

char 1A 2A 2B 3A 4A
χ1 1 1 1 1 1
χsgn = χ2 1 1 −1 1 −1

It suffices to look at abelian quotients of S4 to find its 1-dim irreducible represen-
tations, hence the normal subgroups of S4. One can mod out by A4 to yield the
sign homomorphism from S4 → C×. There are no other abelian quotients, so this
is the only 1-dim rep.

Note that K4, the Klein 4 group, is naturally embedded in S4, and also S4/K4 = S3A rarity! Sn−1 is a quotient
of Sn only when n = 4, 3.

.
Let ϕ be this homomorphism. Recall the character table of S3 from Example 1.4:

1 (12) (123)
χtriv 1 1 1
χsgn 1 −1 1
χ2 2 0 −1

We compose ϕ with the 2-dim representation χ2 above. 2A (i.e. (12)(34)) in S4 is
in the kernel of ϕ, so it will be mapped to the identity, i.e. have trace 2 as well.
The image of 2B (i.e. transpositions) are exactly transpositions in S3, and hence
we have 0. Order 3 elements in S4 get mapped to order 3 element in S3, and hence
we maintain -1 as the trace. Lastly, 4A becomes a transposition.

char 1A 2A 2B 3A 4A
χ1 1 1 1 1 1
χsgn = χ2 1 1 −1 1 −1
χ3 2 2 0 −1 0

We’re still missing 2 representations, since h = 5. We have the natural represen-
tation given by permuting 4 basis vectors. The trace of these representations is
given by how many fixed points a permutation has, i.e. (1A,2A,2B,3A,4A) =
(4,0,2,1,0). This "natural" representation may be decomposed into the trivial
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representation and an irreudcible representation. Hence, we subtrace each trace
by 1 to yield

char 1A 2A 2B 3A 4A
χ1 1 1 1 1 1
χsgn = χ2 1 1 −1 1 −1
χ3 2 2 0 −1 0
χ4 3 −1 1 0 −1

We still need to check that χ4 is irreducible: for this, we compute ⟨χ4, χ4⟩, and
find that it is 1. To find the 5th representation, we can weasle our way out
via number theory. To start, we know the inner product of the columns with
themselves is equal to #S4 = 24, i.e.

1 + 1 + 22 + 32 + χ5(1)2 = 24 =⇒ χ5(1) = 3

We could also try taking Hom(Vi , Vj ) for two of our existing representations, and
hope it is irreducible. Since χHom(Vi ,Vj ) = χViχVj , it should be that χVi (1)χVj (1) = 3
The trivial representation won’t do us any good, so our only valid path forward is
Hom(V2, V4). Filling in the character table would yield

char 1A 2A 2B 3A 4A
χ1 1 1 1 1 1
χsgn = χ2 1 1 −1 1 −1
χ3 2 2 0 −1 0
χ4 3 −1 1 0 −1
χ5 3 −1 −1 0 1

One verifies that ⟨χ5, χ5⟩ = 1, so χ5 is irreducible.

Consider A5.

It’s cardinality is #A5 = 60 and it has no normal subgroups (hence, the method of
finding abelian quotients won’t work!). It’s conjugacy classes are as follows:

name rep size
1A (1) 1
2A (12)(34) 15
3A (123) 20
5A (12345) 12
5B (12354) 12

Once again, h = 5. Let’s start building the character table

# 1 15 20 12 12
char 1A 2A 3A 5A 5B
χ1 1 1 1 1 1
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We can take the standard permutation representation and subtract off the trivial
representation to yield a (hopefully) irreducible representation: (1A, 2A, 3A, 5A, 5B)
have (5, 1, 2, 0, 0) fixed points, so:

# 1 15 20 12 12
char 1A 2A 3A 5A 5B
χ1 1 1 1 1 1
χ2 4 0 1 −1 −1

One checks that χ1, χ2 are orthogonal, and further that ⟨χ2, χ2⟩ = 1 (for irre-
ducibly). Recall that S5 acts transitively on S5/F20 = A5/D10 =: X, a set of 6
elements. Hence, we can consider how many fixed points of A5 acting on X exist.
Recall that an element g ∈ A5 fixes a coset hD10 ⇐⇒ hgh−1 ∈ D10.

5A On X, a five cycle acts as a five cycle (can you think of any other order 5
element permuting 6 letters?), which has 1 fixed point.

5B Same as above.

3A A 3 cycle does not exist in D10, so no cosets are fixed.

2A One finds two copies of (12)(34) in D10, and hence two fixed cosets.

# 1 15 20 12 12
char 1A 2A 3A 5A 5B
χ1 1 1 1 1 1
χ2 4 0 1 −1 −1
χ3 5 1 −1 0 0

We have two more representations to weed out. We can figure their dimensions,
since 1 + 16 + 25 + d2

4 + d2
5 = 60 =⇒ d2

4 + d2
5 = 18 =⇒ d4 = d5 = 3. Hence, we

will search for 3-dim representations.

It is interesting that A5 acts on 3-dim space... we know that A5 is the symmetry
group of the icosahedron and dodecahedron. Consider g = 2A under the action
on one of these objects.

Consider GL3(F2)

Recall some key facts: #GL3(F2) = 168 = 23 · 3 · 7, and it has a Sylow 2 subgroup
isomorphic to D8. We may first consider a trivial representation. Then, typically,
we consider the permutation representation of GL3(F2) on some transitive G-
set. But F3

2 , 0 is such a set, and we generate χ2 by subtracting off the trivial
representation.

Then, for χ3, we consider X, the set of Sylow 7 subgroups. #X |24 and #X ≡7 1,
so #X = 8. It is not 1, or else we would find a new conjugacy class. As a G set
under conjugation, X � G/H , where H is the normalizer of a Sylow 7 subgroup
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P7 (it must have cardinality 21). Then P7 is, by definition, a normal subgroup
of H , so we consider H/P7 � 3Z. Let π : H → 3/Z be the quotient map. Then
π−1 = ker(π) = P7, and every element which maps to 1 or 2 under this map is of
order 3 Since 3|ord(g)|21, and

g3 ∈ P7

.

H has 6 elements of order 7, and 14 of order 3 (1 of order 1). Elements of order 2
or 4 in G may not fix any cosets G/H , since then gaH = aH =⇒ a−1ga ∈ H , and
2,4 ∤ 21. Then, if g ∈ 7A, then g acts a cyclic permutation of length 7 on G/H ,
and therefore has a unique fixed point.

C[V ∗] = {
∑

w ∈ V ∗λw[w] : λw ∈ C} where V ∗ = F3
2 − {0}

size 1 21 56 42 24 24
class 1A 2A 3A 4A 7A 7B
χtriv = χ1 1 1 1 1 1 1
χ2 6 2 0 0 −1 −1
χ3 7 −1 1 −1 0 0

induced representations

Recall the permutation representation of G, i.e. how G permutes a transitive
G-set X � G/H . We can view such a representation V as

V = {f : G/H → C}

where gf (x) = f (g−1(x)). We may also write V as

V = {f : G→ C : f (xh) = f (x)∀h ∈ H}

def 1.13Consider a subgroup H < G and let χ : H → C× be a homomorphism, i.e.
χ ∈ Hom(H,C×). Then the induced representation IndGH (χ) is given by

Vχ = {f : G→ C : f (xh) = χ(h)f (x)∀h ∈ H}

We observe some key facts about the representation (Hopefully)Vχ.

prop 1.17Vχ is preserved by the action of G, where we obey the rule gf (x) = f (g−1x).

proof.Let f ∈ Vχ, g ∈ G. Then gf (xh) = f (g−1(xh)) = f (g−1(x)h), and since f ∈ Vχ,
χ(h)f (g−1(x)) = χ(h)gf (x). Hence, gf ∈ Vχ.

prop 1.18dim(Vχ) = #G/H = [G : H].

proof.
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Let a1, ..., at be a set of coset representatives for G = a1H ⊔ · · · ⊔ atH . We
claim the function

f 7→ (f (a1), ..., f (at)) ∈ Ct

is an isomorphism from Vχ → Ct. We find that this is injective by computing
the kernel. If f ∈ ker, then f (a1) = ... = f (at) = 0. But since f ∈ Vχ,
f (ajh) = χ(h)f (aj) = 0. Hence, f (g) = 0 ∀g ∈ G. Conversely, for surjectivity,
if we know how f acts on a1, then we know how f acts on all g ∈ G, since we
may write g = aih for h ∈ H and some ai .

Hence, ifH is a quotient of G, then any representation ofH yields a representation
for G. Quotients are quite rare, though, and we observe further that for any
subgroup H < G, any character of H yields a representation for G.

1.11 Basis of Induced Representation

Fix an induced representation Vψ, on which we write instead f : G → C :
f (xh) = ψ−1(h)f (x) for f ∈ Vψ. For all g ∈ G, then

χVψ =
∑

aH∈G/H
a−1ga∈H

ψ(a−1ga)

proof.

We fix a basis for Vψ. For a ∈ G, let δa be the unique function in Vψ satisfying

δa(a) = 1 δa(x) = 0 x < aH

Since δ ∈ Vψ, we have δa(ah) = ψ−1(h). Then δa1
, ..., δat are linearly indepen-

dent for coset representatives ai , since all but δai (ai) terms disappear.

Let an element g ∈ G map a coset gajH = aj ′H . Then gaj = aj ′hj for some
hj ∈ H . Observe, then, gδa = δga and δah = ψ(h)δa.

gδaj = δgaj = δaj′ hj = ψ(hj )δaj′

Then, finally,

χVψ (g) =
t∑
j=1

ψ(hj ) =
t∑
j=1

ψ(a−1
j gaj ) =

∑
a∈G/H
gaH=aH

ψ(a−1ga)
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1.12
χVψ (g) =

#G
#H

1
#C(g)

∑
γ∈C(g)∩H

ψ(γ)

proof.χVψ (g) =
∑
a∈G/H
gaH=aH

ψ(a−1ga) =
1

#H

∑
a∈G

a−1ga∈H

ψ(a−1ga)

=
#Z(g)

#H

∑
a∈Z(g)\G

ψ(a−1ga) =
#G
#H

1
#C(g)

∑
a∈Z(g)\G

ψ(γ)

where, by Orbit Stabilizer, Z(g)#C(g) = #G. We further get an isomorphism
Z(g) \ G � C(g).

♠Examples♣ e.g. 1.7

LetG = GL3(F2) andH be the normalizer of P7, a Sylow 7 subgroup ofG. Consider
Vψ = IndGH (ψ), where ψ is the 1-dim representation via H → Z/3Z. By the
theorem above, its character on 1 is

8 × 1
1

∑
1

ψ(1) = 8

There are no order 2 elements in the Sylow subgroup of order 7, so its character
is 0. The same holds for elements of order 4. For order 3 elements, we have

8 × 1
56

∑
g∈ord=3∈H

ψ(g) =
1
7

(
7e

2πi
3 + 7e

4πi
3
)

= −1

To find the number of order 3 elements, we consider the quotient map H → Z/3Z,
and in particular the preimage of 1 and 2 (which are order 3 elements). Then,
there are at least 7 elements of each, and so 14 in total.

For order 7 element, we consider both 7A ∩ H and 7B ∩ H . One would imagine,
since there are 6 such elements in total, that the classes are split 3 and 3. But this
is true: if g ∈ 7A, then g2 and g4 belong to 7A, but g6, g5, g3 belong to 7B. We
yield 6 distinct elements, and hence conclude that they are distributed 3 and 3. Hint about this fac: consider

x3 + x2 + 1↔ 7A and
x3 + x + 1↔ 7B

8 × 1
24

∑
7A∩H

ψ(g) =
24
24

= 1
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The same will occur for 7B, and we add a character row.

size 1 21 56 42 24 24
class 1A 2A 3A 4A 7A 7B
χtriv = χ1 1 1 1 1 1 1
χ2 6 2 0 0 −1 −1
χ3 7 −1 1 −1 0 0
χ4 8 0 −1 0 1 1

One checks the inner product of χ4 with itself to conclude that is is irreducibility.
To find the dimensions of the remaining characters d5, d6, we have

1 + 62 + 72 + 82 + d2
5 + d2

6 = 168 =⇒ d2
5 + d2

6 = 18 =⇒ d5 = d6 = 3
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tensor products

Previously, we’ve seen how to generate new representations from old ones, e.g.
with direct sums V1 ⊕ V2, where g(v, w) = (gv, gw) and HomC(V1, V2), where
gT = gT g−1. The characters of these new representations is χ1 + χ2 and χ1χ2,
respectively.

One could also take Hom(V1,C) := V ∗, the space of linear functionals (one envis-
ages C as the trivial representation). Then χV ∗ = χV .

def 1.14V1 ⊗ V2 := HomC(V ∗1 , V2) is the tensor product of V1 and V2.

prop 1.19dim(V1 ⊗ V2) = dim(V1) dim(V2).

def 1.15Given v1 ∈ V1, v2 ∈ V2, we define v1 ⊗ v2 ∈ V1 ⊗ V2 to take ℓ ∈ V ∗1 7→ ℓ(v1)v2.

Let e1, ..., en be a basis for V1 and f1, ..., fm be a basis for V2. Let v1 = a1e1 + ...+anen
and v2 = b1f1 + ... + bmfm. Then

v1 ⊗ v2 = (a1e1 + ... + anen) ⊗ (b1f1 + ... + bmfm) =
∑

aibj(ei ⊗ fj )

prop 1.20G acts on V1 ⊗ V2 by g(v1 ⊗ v2) = (gv1) ⊗ (gv2). Then χV1⊗V2
= χV1

χV2
.

proof.Fix g ∈ G. Let {ei} and {fi} be bases of eigenvectors for g. Then let gei = λiei
and gfi = µifi . We have

g(ei ⊗ fj ) = (gei) ⊗ (gfj ) = (λiei) ⊗ (µj fj ) = λiµj(ei ⊗ fj )

Then tr(ρV1⊗V2
(g)) =

∑
i∈[n],j∈[m] λiµj = (

∑
i∈[n] λi)(

∑
j∈[m] µj ) = tr(ρV1

(g))tr(ρV2
(g)).

One may also observe directly via χHom(V1,V2) = χV1
χV2

applications of representations

· · ·

Let V is a representation of G and T : V → V be a G-equivariant endomorphism,
i.e. ∈ EndG(V ). If V = V1 ⊕ · · · ⊕ Vt for irreducible, distinct representations of
multiplicities all 1, then T (Vj) ⊆ Vj and T (v) = λjv ∀v ∈ Vj . By composing
inclusion maps and projection maps, we have

V V

Vj Vi

T

πiηj

Tij
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Where ηj ∈ HomG(Vj , V ) and πi ∈ HomG(V , Vi), as shown below. Take an arbi-
trary v = v1 + ... + vt. Then g distributes over the sum, and so

gπi(v) = gvi = πig(v)

We write Tij = πiT ηj ∈ HomG(Vj , Vi). By Schur’s Lemma, then

Tij =

0 i , j

λi i = j

We observe this manually: let v ∈ Vj = Vi . Then

T (v) = π1T (v) + ... + πtT (v) = T1j(v) + ... + Ttj(v) = Tjj(v) = λjv

Using this, we have

T (v) =


T11 T12 · · · T1t
T21 T21 · · · T2t
...

...
. . .

...
Tt1 T t2 · · · Ttt

 Tij ∈ HomG(Vi , Vj )

In the extreme setting where Vi = F and V is Ft, Tij ∈ HomG(F,F) = F. Then
T : V → V are represented by our familiar t × t matrices with entries in F, as
above.

♠Examples♣e.g. 1.8

Let X be the faces of a cube. Let V = L2(X) ⟲ G = S4Finite, C-valued functions on
X

. Then let

T : V → V : T (ϕ)(x) =
1
4

∑
y∼x

ϕ(y)

where y ∼ x ⇐⇒ y and x are adjacent faces. We wish to decompose L2(X) = V
into a sum of irreducible representations of S4. Recall the characters of S4 itself:

class 1A 2A 2B 3A 4A
size 1 6 3 8 6
χ1 1 1 1 1 1 triv
χ2 1 −1 1 1 −1 sgn
χ3 2 0 2 −1 0
χ4 3 1 −1 0 −1 natural
χ5 3 −1 −1 0 1 χ2 ⊗ χ4
χ6 6 0 2 0 2 not irrep, calculate FP on X

We conclude from this table that L2(X) = V1 ⊕ V3 ⊕ V5. The trivial representation
V1 is comprised of all constant functions.
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def 1.16A function ϕ : X → C is called even if ϕ(X) = ϕ(x′), where x′ is the face opposite
to x. The dimension of the vector space of even functions, say L2(X)+, is hence 3.

If ϕ ∈ L2(X)+, then gϕ(x) = ϕ(g−1x), and gϕ(x′) = ϕ(g−1x′), so ϕ(g−1x) =
ϕ(g−1x′), so G preserves L2(X)+. We want to extract the trivial representation out
of these functions, so define

L2(X)+,0 := {ϕ : X → C : ϕ ∈ L2(X)+ and
∑
x∈X

ϕ(x) = 0}

with this we can write
V1

constant fns

⊕ V3

L2(X)+,0︸                 ︷︷                 ︸
L2(X)+

⊕V5

Similarly, we consider the space of odd functions L2(X)− = {ϕ : X → C : ϕ(x′) =
−ϕ(x)}, and extract the trivial representation similarly to yield L2(X)−,0.

Recall that T , defined at the start, preserves V1, V3 and V5. T (1) = 1, thankfully.
If ϕ ∈ V5, then T (ϕ) = 0. If ϕ ∈ V3, we consider
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II Galois Theory
def 2.1 If E and F are fields, then E is an extension of F if F is a subfield of E.

We always take fields to be
commutative, unless

specified.
If E is an extension of F, then E is also a vector space over F. Hence, we have

def 2.2 The degree of E is dimF(E), the dimension of E as an F-vector space. It is either a
positive integer or infinity. We sometimes denote [E : F] = dimF(E).

def 2.3 E over F is called a finite extension if [E : F] < ∞.

♠Examples♣e.g. 2.1

Eg 1: Consider E = C and F = R. Then [C : R] = 2, with a basis {1, i}.

Eg 2: Consider E = C and F = Q. Then [C : Q] = ∞.

Eg 3: Let F be arbitrary, and E = F[x]/⟨p(x)⟩, where p is irreducible, i.e. E are
polynomials in F with degree < p(x). In particular, E is an extension of F, and
[E : F] = deg(p).

Eg 4: Let E = F(x) be the fraction field of F[x], i.e. all expressions
{
f (x)
g(x) : f , g ∈ F[x], g , 0

}
.

Then [E : F] = ∞, in much the same spirit as Eg 2.

2.1 Multiplicity of the Degree

Let K ⊂ F ⊂ E be finite extensions. Then

[E : K] = [E : F][F : K]

proof.

Let n = [E : F] and m = [F : K]. Let α1, ..., αn be a basis for E as an F vector
space, and similarly, β1, ..., βm be a basis for F as a K vector space. Let a ∈ E.
Then

a = λ1α1 + ... + λnαn

uniquely for λi ∈ F. But each λi may be written uniquely as

λi = λi1β1 + ... + λimβm = λ⃗i β⃗

where λij ∈ K . Then, substituting this expression in for λi , we see that

a = λ⃗1β⃗α1 + ... + λ⃗nβ⃗αn =
n∑
i=1

m∑
j=1

λijαiβj
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and hence {αiβj}1≤i≤n
1≤j≤m

is a K basis for E.

def 2.4A complex number is constructible by ruler and compass if it can be obtained from
Q by successive applications of + or

√·. Alternatively, α ∈ R is constructible if
there exists quadratic extensions Q ⊂ F1 ⊂ · · · ⊂ Fn such that [Fi+1 : Fi] = 2 and
α ∈ Fn.

The set of elements constructible by ruler and compass is an extension of Q of
infinite degree.

2.2 Non-Constructible Roots In fact, if α ∈ R satisfies any
odd-degree irreducible, then
this holdsIf α ∈ R satisfies an irreducible, cubic polynomial over Q, then α is not

constructible by ruler and compass.

proof.

Suppose that α is constructible. Then Q ⊂ F1 ⊂ · · · ⊂ Fn, where [Fi+1 : F] = 2,
and Fi+1 = Fi(

√
ai) : ai ∈ Fi . Then α ∈ Fn, and in particular [Fn : Q] = 2n.

But Q[x]/p(x) = Q(α) for the cubic p of interest, where we consider the
homomorphism Q[x] → Q(α) by f (x) → f (α). We can write, then [Q(α) :
Q] = [Q[x]/p(x) : Q] = 3. But α ∈ Fn and α ∈ Q(α), so Fn is a Q(α) vector
space of dimension d. In other words, 3d = 2n, which is a contradiction.

Fn

F2

Q(α) F1

Q

2

d

2 2n

3
2

In fact, then if α ∈ R satisfies any irreducible, odd-degree polynomial over Q,
we get this result.

♠Examples♣ e.g. 2.2

As a consequence of Thm 2.2, we cannot duplicate the unit cube, since 3
√

2 is not
constructible (is it the root of x3 − 2). Similarly, we cannot trisect an angle, since
cos(2π

9 ) satisfies 4x3 − 3x + 1
2 = 0.
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def 2.5 Let E/F be a finite extension. An element α ∈ E is algebraic over F if α is the root
of a polynomial in F[x].

For example,
√

2 is algebraic over Q (see x2 − 2), and i is algebraic over Q and R
(see x2 + 1). However, π is not algebraic over Q, but it is algebraic over Q(π3) (see
x3 − π3). The set of α ∈ R which are algebraic over Q is countable!

Since we can essentially
associate with each α a

polynomial in Q. But Q is
countable, and hence Q[x] is.

prop 2.1 If E/F is a finite extension, then every α ∈ E is algebraic over F.

proof. 1, α, α2, ..., αn cannot be linearly independent, since [E : F] = n. Hence, there
exist coefficients which vanish a linear combination of these elements.

def 2.6 The automorphism group of E/F is

Aut(E/F) := {σ : E → E : σ (x + y) = σ (x) + σ (y) : σ (xy) = σ (x)σ (y) : σ |F = 1}

prop 2.2 σ (1) = 1, σ (0) = 0, σ (a−1) = σ (a)−1 for σ ∈ Aut(E/F).

prop 2.3 If [E : F] < ∞, then Aut(E/F) acts on E with finite orbits.

proof. Consider an element α ∈ E. Since α is algebraic for F, there is a polynomial
anα

n + ... + a1α + a0 = 0, where ai ∈ F. Let σ ∈ Aut(E/F). Then

σ (anα
n + ... + a1α + a0) = 0

by Prop 2.2. But, by linearity and vanishing conditions, this is also

σ (anα
n) + ... + σ (a1α) + σ (a0) = anσ (α)n + ... + a1σ (α) + a0

We conclude: if α is a root of f (x) ∈ F[x], then σ (α) is a root of f (x). Hence,
the orbit of α under the action of Aut(E/F) will be contained in the roots of
f (x), which is finite.

We only used the fact, here, that α ∈ E is algebraic. Hence, if E/F is an algebraic
extension (i.e. all α ∈ E are algebraic), then the result also holds.

prop 2.4 If [E : F] < ∞, then #Aut(E/F) < ∞.

proof. Let α1, ..., αn be generators for E over F. Let G = Aut(E/F). Then

E = F(α1, ..., αn)

If σ ∈ Aut(E/F), then σ is completely determined by (σ (α1), ..., σ (αn)), which
is completely contained in

orbG(α1) × · · · × orbG(αn)
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♠Examples♣ e.g. 2.3

Suppose that E is generated over F by a single element α. Then E = F(α). Let
p(x) ∈ F[x] be the minimal polynomial of α. We have evα : F[x] → F[α] by
f (x) 7→ α. Then ker(evα) = (p(x)). Hence, F[x]/(p(x)) � F[α].

F[x]/(p(x)) is an integral domain, and hence a field, so F[α] = F(α). Hence
[F(α) : F] = deg(p).

σ ∈ Aut(F(α)/F) is determined by σα ∈ { roots of p(x)}, which, as a set, is ≤
deg(p(x)) = [F(α) : F], so we have

#Aut(E/F) ≤ [E : F]

This inequality is true in general.

prop 2.5Any homomorphism ϕ : E → E is automatically injective. In fact, since [E : F] <
∞, it is automatically surjective as well.

prop 2.6If E/F is any finite extension of fields, then #Aut(E/F) ≤ [E : F].

proof.We’ll proceed by induction on the number of generators for E over F. Let
E = F(α1, ..., αn).

Notice Aut(E/F) = HomF(E, E). Let M be any extension of F, and consider
HomF(E,M). We’ll instead prove #HomF(E,M) ≤ [E : F]. The n = 1 is similar
to the example above. E = F(α) = F[α], where pα(x) ∈ F[x] is the minimal
polynomial of α. Then d = [E : F] = deg(pα(x)).

Consider ϕ ∈ HomF(E,M). Then the map ϕ → ϕ(α) is an inclusion HomF(E,M)
into the roots of pα(x) in M, by observing

ϕ(a0 + ... + ad−1α
d−1) = a0 + ... + ad−1ϕ(α)d−1

Now we show n → n + 1. Set E = F(α1, ..., αn+1). Let F′ = F(α1, ..., αn). If
F′ = E, then we’re done. One may write E = F′(αn+1). Let [F′ : F] = d1 and
[E : F′] = d2.

Let g(x) ∈ F′[x] be the minimal polynomial of αn+1. Then d2 = deg(g(x)).
Compute the restriction map

HomF(E,M)→ HomF(F′ , M)

We know, by induction, #HomF(F′ , M) ≤ [F′ : F] = d1. We ask: given ϕ0 ∈
HomF(F′ , M), how many ϕ : E → M’s exist such that ϕ|F′ = ϕ0? Consider

g(x) = λd2
xd2 + ... + λ1x + λ0 : λi ∈ F′
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αn+1 satisfies g. Then ϕ(αn+1) is a root of the polynomial ϕ0(g(x)) ∈ M[x],
so there at most d2 choices of roots. Hence, #HomF(E,M) ≤ d1 · d2 = [E : F].

def 2.7 An extension E/F is called Galois is #Aut(E/F) = [E : F]. We the write Gal(E/F) :=
Aut(E/F).

♠Examples♣e.g. 2.4

Eg 1: Let F = C and F = R, [E : F] = 2. We have c : C → C by x + iy 7→ x − iy.
This is a field automorphism, so Aut(C/R) ⊆ {1, c}, and indeed = {1, c}, since
#Aut(C/R) ≤ [C : R] ≤ 2.

Eg 2: Let F = Q and E = Q( 3
√

2) = Q[x]/(x3 − 2) ⊂ R. Then Aut(Q( 3
√

2)/Q)↔ roots
of x3 − 2 over Q( 3

√
2) ⊆ R. But the only such root is 3

√
2, so #Aut(Q( 3

√
2)/Q) = 1 < 3,

so Q( 3
√

2) is not Galois over Q. What can we do to make this Galois?

Eg 3: Let F = Q as above and E = Q( 3
√

2, ξ), where ξ3 = 1 is the cube root of unity,
and satisfies x2 + x + 1. We claim that E is Galois.

Q( 3
√

2, ξ)

Q(ξ) Q( 3
√

2)

Q

3 2

6

2 3

Hence, [E : Q] = 6. Now let ϕ ∈ Aut(E/Q). Then ϕ(ξ) will be a root of x2 + x + 1,
i.e. ξ or ξ. Similarly, ϕ( 3

√
2) will satisfy x3 − 2, so it may be 3

√
2, ξ 3
√

2, or ξ 3
√

2.

Now, let r1 = 3
√

2, r2 = ξ 3
√

2, and r3 = ξ 3
√

2. These are the three roots of x3 − 2. We
will construct a table of automorphisms depending on where ϕ sends ξ and 3

√
2.

ξ → ξ ξ → ξ

3
√

2→ 3
√

2 Id (r2 r3)
3
√

2→ ξ 3
√

2 (r1 r2 r3) (r1 r2)
3
√

2→ ξ 3
√

2 (r1 r3 r2) (r1 r3)

Hence, Gal(E/F) � S3, and has size 6, as desired.

def 2.8 Let E/F be a finite Galois extension. Consider G = Gal(E/F). Then

EG = {α ∈ E : gα = α ∀g ∈ G}

prop 2.7 EG is a subfield of E, which contains F.
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2.3 EG = F

proof.

E

EG

F

We know #G ≤ [E : EG], since G ⊂ Aut(E/EG), and also [E : F] = #G,
since E/F is Galois. But [E : EG]|[E : F] by multiplicity, so we conclude
[E : EG] = [E : F] =⇒ [EG : F] = 1. Hence, EG = F exactly.

2.4 If E/F is Galois, it is Normal

If f (x) is an irreducible polynomial in F[x] which has a root in E, then f (x)
splits completely into linear factors in E[x].

proof.

Let r ∈ E be a root of f (x). Let {r1, ..., rn} be the orbit of r ∈ E under Gal(E/F).
Consider now

g(x) := (x − r1) · · · (x − rn) ∈ E[x]

Exanded out, we get

xn + σ1x
n−1 + σ2x

n−1 + ... + (−1)nσn

where σi are the "elementary symmetric functions" in r1, ..., rn, e.g. σ1 =
r1 + ... + rn and σn = r1 · · · rn. We find that σj ∈ EG, since G = Gal(E/R)
permutes the roots r1, ..., rn, and σi are symmetric. But EG = F, so σi ∈ F.
Hence, g(x) ∈ F[x].

f (x) is the minimal polynomial which vanishes r over F, since it is irreducible,
so f (x)|g(x) = (x − r1) · · · (x − rn), as desired.

splitting fields

def 2.9Let F be a field and f (x) be any polynomial in F[x]. A splitting field of f (x) is an
extension E/F satisfying

1. f (x) factors into linear factors in E[x]:

f (x) = (x − r1) · · · (x − rn) : rn ∈ E
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2. E is generated, as a field, by the roots r1, ..., rn.

prop 2.8 The splitting field always exists.

proof. By induction on deg(f ) = n. If n = 1, then E = F itself.

Let deg(f ) = n + 1. Let p(x) be an irreducible factor of f (x). Consider
L = F[x]/(p(x)). Then L is a field containing F and a root of p(x) (and hence
of f (x)). Let r be such a root of p(x) in L, and in particular recall that
r = x+(p(x)). Then x−r divides f (x) in L[x], i.e. we can write f (x) = (x−r)g(x),
with deg(g) = n.

Let E be the splitting field of g(x) over L.See March 17th, 45:00min

We remark that it is computationally hard to compute the degree of a splitting
field of f (x). In particular, if f (x) is irreducible of degree n, and E is the splitting
field of f (x), then

n ≤ [E : F] ≤ n!

2.5 All Splitting Fields Are Equivalent

If f (x) ∈ F[x] and E, E′ are two splitting fields of f (x) over F, then E � E′ as
extensions of F.

proof.

We’ll show again by induction on the degree deg(f ) = n. If n = 1, then
E = E′ = F. Let p(x), as before, be an irreducible factor of f (x), and let r be a
root of p(x) in the splitting field E. Similarly, let r ′ be a root of p(x) in E′. We
know that F(r) and F(r ′) are isomorphic over F, since hey are both F[x]/p(x).
Let ϕ be the isomorphism F(r)→ F(r ′).

Denote L = F(r) = F(r ′). Then notice that E, E′ are splitting fields of g(x) :
(x − r)g(x) = f (x) over L, so E and E′ are isomorphic as extensions of L, and
hence F.

prop 2.9 If E/F is Galois, then E is the splitting field of a polynomial f (x) in F[x].

proof. Since [E : F] < ∞, let α1, ..., αn be a finite set of generators for E/F. Let
f1, ..., fn be the minimal irreducible polynomials in F[x] having these roots.

Consider f (x) = f1(x) · · · fn(x). By normality of E[x] (see Thm 2.4), all the f ′j s
factor completely in E[x], and hence in F. The roots of f (x) generate E, so E
is a splitting field of f (x).

Recall that any finite field F contains Fp for some prime p, notably p = char(F).
Then, let n := dimFp (F). We have #F = pn.



35 galois theory

2.6 Unique Field of Prime Power Cardinality

Given a prime p and an integer n ≥ 1, there is a field F of cardinality pn.
Furthermore, this field is unique.

proof.

One possible approach is to find a polynomial f (x) in Fp[x] which is irre-
ducible of degree n. Then

F := Fp[x]/(f (x))

is the desired field.

If F is a field of cardinality pn, then F× is an abelian, cyclic group of cardinality
pn − 1. Hence, for all elements x ∈ F×, xpn−1 ≡ 1, and hence xp

n−1 − 1 ≡ 0 =⇒
xp

n − 1 ≡ 0.

F is then the collection of roots of the polynomial xp
n − x. Let F be the

splitting field of xp
n − x.

Claim: This is the a field of cardinality pn. Note that xp
n − x has distinct roots

in any extension of Fp.

f (x) = xp
n
− x =⇒ f ′(x) = −1

by considering the identity above. Hence, gcd(f , f ′) = 1, and #F ≥ pn. We
now need to show that #F = pn exactly. To do so, recall that the set of roots of
xp

n − x is closed under addition and multiplication, and is hence a field, so
#F ≤ pn.

The uniqueness of F up to isomorphism follows from Thm 2.5.

Note that F, as constructed above, is an extension of Fp. Is it Galois?

def 2.10The map ϕ : F → F by a 7→ ap is called the Frobenius automorphism.

Because ϕ is a homomorphism, it injects F ↪→ F; but, as dimFp(F) < ∞, ϕ is a
bijection, and hence an automorphism. We can write ϕ ∈ Aut(F/Fp). What is the

order of ϕ? ϕk(a) = ap
k
. What is the least k such that ϕk(a) = a ∀a ∈ F. If there

exists such a k, then xp
k − x has at least pn roots, and so k ≥ n. But also ϕn = I ,

so exactly k = n, and ord(ϕ) = n in Aut(F/Fp). Hence, Z/pZ ⊂ Aut(F/Fp). But
#Aut(F/Fp) ≤ [F/Fp] = n, so in fact Z/pZ = Aut(F/Fp), with a canonical generator
ϕ of order n:

Gal(F/Fp) = {ϕ, ..., ϕn−1, ϕn = 1}
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